ASRDb: A comprehensive resource for archaeal stress response genes

نویسندگان

  • Rajendra Kumar Labala
  • Santasabuj Das
  • Surajit Basak
چکیده

An organism's survival strategy under the constantly changing environment depends on its ability to sense and respond to changes in its environment. Archaea, being capable to grow under various extreme environmental conditions, provide valuable model for exploring how single-celled organisms respond to environmental stresses. However, no such approach has ever been made to make an integrated classification of various archaeal stress responses. Archaeal Stress Response Database (ASRDb) is a web accessible (http://121.241.218.70/ASRDb) database that represents the first online available resource providing a comprehensive overview of stress response genes of 66 archaeal genomes. This database currently contains almost 6000 stress specific genes of 66 archaeal genomes. All the stress specific genes are grouped into 17 different stress categories. A user-friendly interface has been designed to examine data using query tools. This database provides an efficient search engine for random and advanced database search operations. We have incorporated BLAST search options to the resulting sequences retrieved from database search operations. A site map page representing the schematic diagram will enable user to understand the logic behind the construction of the database. We have also provided a very rich and informative help page to make user familiar with the database. We sincerely believe that ASRDb will be of particular interest to the life science community and facilitates the biologists to unravel the role of stress specific genes in the adaptation of microorganisms under various extreme environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identified Hybrid tRNA Structure Genes in Archaeal Genome

Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separ...

متن کامل

Key Genes Involved in Wheat Response to Salinity Stress and Mapping their Gene Network

Extended Abstract Introduction and Objective: Considering the importance of salinity in wheat and the multigene nature of this trait, the present study was conducted to investigate the expression of key genes involved in the response of wheat to this stress and to create their network. Material and Methods: In this study, the expression of key genes (HKT, DREB, bZIP, NAC, and WARKY) involved...

متن کامل

Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.

Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...

متن کامل

Monitoring Response of a Few bZip Transcription Factors in Response to Osmotic Stress in Sunflower

Background: Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world and in Iran, as well. It is classified as a drought semi-tolerant crop; however, its yield is adversely affected by drought stress. Understanding the initial events in sensing stress and the related physiologic and biochemical events thereafter, is crucial in designing droug...

متن کامل

Pre_GI: a global map of ontological links between horizontally transferred genomic islands in bacterial and archaeal genomes

The Predicted Genomic Islands database (Pre_GI) is a comprehensive repository of prokaryotic genomic islands (islands, GIs) freely accessible at http://pregi.bi.up.ac.za/index.php. Pre_GI, Version 2015, catalogues 26 744 islands identified in 2407 bacterial/archaeal chromosomes and plasmids. It provides an easy-to-use interface which allows users the ability to query against the database with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013